您好,欢迎访问代理记账网站
移动应用 微信公众号 联系我们

咨询热线 -

电话 15988168888

联系客服
  • 价格透明
  • 信息保密
  • 进度掌控
  • 售后无忧

基于股票数据的多元线性回归分析

数据:https://download.csdn.net/download/qq_38735017/16083232

多元线性回归分析理论参考博客:https://www.wwwbuild.net/python-china/20079.html

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")#忽略一些警告 不影响运行 
%matplotlib inline
import numpy as np
import pandas as pd
import statsmodels.api as sm

data=pd.read_csv("600519.csv",encoding='gbk')
data.head()

data.drop(['股票代码','名称','日期',],axis=1, inplace=True) # 删除操作  # '涨跌额','涨跌幅','成交金额','总市值','流通市值','成交量','换手率'
data.columns


# 两类相关性分析
plt.figure(figsize=(16,8))
plt.title("收盘价和前收盘相关性图")
sns.scatterplot(list(data["收盘价"]),list(data["前收盘"]))
plt.show()

# 散点图
plt.show()
# 两类相关性分析  最高价', '最低价', '开盘价'
plt.figure(figsize=(16,8))
plt.title("收盘价和开盘价相关性图")
sns.scatterplot(list(data["收盘价"]),list(data["开盘价"]))
plt.show()

# 散点图
plt.show()
plt.figure(figsize=(16,8))
plt.title("收盘价和最高价相关性图")
sns.scatterplot(list(data["收盘价"]),list(data["最高价"]))
plt.show()

# 散点图
plt.show()
plt.figure(figsize=(16,8))
plt.title("收盘价和最低价相关性图")
sns.scatterplot(list(data["收盘价"]),list(data["最低价"]))
plt.show()

# 热力图 
ax=plt.subplots(figsize=(20,16))
ax=sns.heatmap(data.corr(),vmax=.8,square=True,annot=True)
# 解决中文显示问题
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.show()

x = sm.add_constant(np.asarray(data.iloc[:,1:5].values))#生成自变量
y = data['收盘价'] #生成因变量
model = sm.OLS(y, x) #生成模型
result = model.fit() #模型拟合
result.summary() #模型描述


分享:

低价透明

统一报价,无隐形消费

金牌服务

一对一专属顾问7*24小时金牌服务

信息保密

个人信息安全有保障

售后无忧

服务出问题客服经理全程跟进